11 research outputs found

    SIGNALS: I. Survey description

    Get PDF
    SIGNALS, the Star formation, Ionized Gas, and Nebular Abundances Legacy Survey, is a large observing programme designed to investigate massive star formation and H II regions in a sample of local extended galaxies. The programme will use the imaging Fourier transform spectrograph SITELLE at the Canada–France–Hawaii Telescope. Over 355 h (54.7 nights) have been allocated beginning in fall 2018 for eight consecutive semesters. Once completed, SIGNALS will provide a statistically reliable laboratory to investigate massive star formation, including over 50 000 resolved H II regions: the largest, most complete, and homogeneous data base of spectroscopically and spatially resolved extragalactic H II regions ever assembled. For each field observed, three datacubes covering the spectral bands of the filters SN1 (363– 386 nm), SN2 (482–513 nm), and SN3 (647–685 nm) are gathered. The spectral resolution selected for each spectral band is 1000, 1000, and 5000, respectively. As defined, the project sample will facilitate the study of small-scale nebular physics and many other phenomena linked to star formation at a mean spatial resolution of ∼20 pc. This survey also has considerable legacy value for additional topics, including planetary nebulae, diffuse ionized gas, and supernova remnants. The purpose of this paper is to present a general outlook of the survey, notably the observing strategy, galaxy sample, and science requirementsThis research was based on observations obtained at the CFHT, which is operated from the summit of Mauna Kea by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii

    Possible Disintegrating Short-Period Super-Mercury Orbiting KIC 12557548

    Get PDF
    We report here on the discovery of stellar occultations, observed with Kepler, that recur periodically at 15.685 hour intervals, but which vary in depth from a maximum of 1.3% to a minimum that can be less than 0.2%. The star that is apparently being occulted is KIC 12557548, a K dwarf with T_eff = 4400 K and V = 16. Because the eclipse depths are highly variable, they cannot be due solely to transits of a single planet with a fixed size. We discuss but dismiss a scenario involving a binary giant planet whose mutual orbit plane precesses, bringing one of the planets into and out of a grazing transit. We also briefly consider an eclipsing binary, that either orbits KIC 12557548 in a hierarchical triple configuration or is nearby on the sky, but we find such a scenario inadequate to reproduce the observations. We come down in favor of an explanation that involves macroscopic particles escaping the atmosphere of a slowly disintegrating planet not much larger than Mercury. The particles could take the form of micron-sized pyroxene or aluminum oxide dust grains. The planetary surface is hot enough to sublimate and create a high-Z atmosphere; this atmosphere may be loaded with dust via cloud condensation or explosive volcanism. Atmospheric gas escapes the planet via a Parker-type thermal wind, dragging dust grains with it. We infer a mass loss rate from the observations of order 1 M_E/Gyr, with a dust-to-gas ratio possibly of order unity. For our fiducial 0.1 M_E planet, the evaporation timescale may be ~0.2 Gyr. Smaller mass planets are disfavored because they evaporate still more quickly, as are larger mass planets because they have surface gravities too strong to sustain outflows with the requisite mass-loss rates. The occultation profile evinces an ingress-egress asymmetry that could reflect a comet-like dust tail trailing the planet; we present simulations of such a tail.Comment: 14 pages, 7 figures; submitted to ApJ, January 10, 2012; accepted March 21, 201

    Signals: I. Survey description

    Get PDF
    SIGNALS, the Star formation, Ionized Gas, and Nebular Abundances Legacy Survey, is a large observing programme designed to investigate massive star formation and H II regions in a sample of local extended galaxies. The programme will use the imaging Fourier transform spectrograph SITELLE at the Canada–France–Hawaii Telescope. Over 355 h (54.7 nights) have been allocated beginning in fall 2018 for eight consecutive semesters. Once completed, SIGNALS will provide a statistically reliable laboratory to investigate massive star formation, including over 50 000 resolved H II regions: the largest, most complete, and homogeneous data base of spectroscopically and spatially resolved extragalactic H II regions ever assembled. For each field observed, three datacubes covering the spectral bands of the filters SN1 (363–386 nm), SN2 (482–513 nm), and SN3 (647–685 nm) are gathered. The spectral resolution selected for each spectral band is 1000, 1000, and 5000, respectively. As defined, the project sample will facilitate the study of small-scale nebular physics and many other phenomena linked to star formation at a mean spatial resolution of ∼20 pc. This survey also has considerable legacy value for additional topics, including planetary nebulae, diffuse ionized gas, and supernova remnants. The purpose of this paper is to present a general outlook of the survey, notably the observing strategy, galaxy sample, and science requirements

    WISDOM project - XI. Star formation efficiency in the bulge of the AGN-host Galaxy NGC 3169 with SITELLE and ALMA

    Get PDF
    The star formation efficiency (SFE) has been shown to vary across different environments, particularly within galactic starbursts and deep within the bulges of galaxies. Various quenching mechanisms may be responsible, ranging from galactic dynamics to feedback from active galactic nuclei (AGNs). Here, we use spatially resolved observations of warm ionized gas emission lines (Hβ, [O iii] λλ4959,5007, [N ii] λλ6548,6583, Hα and [S ii] λλ6716,6731) from the imaging Fourier transform spectrograph SITELLE at the Canada-France-Hawaii Telescope (CFHT) and cold molecular gas (12CO(2-1)) from the Atacama Large Millimeter/sub-millimeter Array (ALMA) to study the SFE in the bulge of the AGN-host galaxy NGC 3169. After distinguishing star-forming regions from AGN-ionized regions using emission-line ratio diagnostics, we measure spatially resolved molecular gas depletion times (τdep 1/SFE) with a spatial resolution of ≈100 pc within a galactocentric radius of 1.8 kpc. We identify a star-forming ring located at radii 1.25 ± 0.6 kpc with an average τdep of 0.3 Gyr. At radii <0.9 kpc, however, the molecular gas surface densities and depletion times increase with decreasing radius, the latter reaching approximately 2.3 Gyr at a radius ≈500 pc. Based on analyses of the gas kinematics and comparisons with simulations, we identify AGN feedback, bulge morphology and dynamics as the possible causes of the radial profile of SFE observed in the central region of NGC 3169

    SIGNALS: I. Survey description

    Get PDF
    SIGNALS, the Star formation, Ionized Gas, and Nebular Abundances Legacy Survey, is a large observing programme designed to investigate massive star formation and H II regions in a sample of local extended galaxies. The programme will use the imaging Fourier transform spectrograph SITELLE at the Canada–France–Hawaii Telescope. Over 355 h (54.7 nights) have been allocated beginning in fall 2018 for eight consecutive semesters. Once completed, SIGNALS will provide a statistically reliable laboratory to investigate massive star formation, including over 50 000 resolved H II regions: the largest, most complete, and homogeneous data base of spectroscopically and spatially resolved extragalactic H II regions ever assembled. For each field observed, three datacubes covering the spectral bands of the filters SN1 (363–386 nm), SN2 (482–513 nm), and SN3 (647–685 nm) are gathered. The spectral resolution selected for each spectral band is 1000, 1000, and 5000, respectively. As defined, the project sample will facilitate the study of small-scale nebular physics and many other phenomena linked to star formation at a mean spatial resolution of ∼20 pc. This survey also has considerable legacy value for additional topics, including planetary nebulae, diffuse ionized gas, and supernova remnants. The purpose of this paper is to present a general outlook of the survey, notably the observing strategy, galaxy sample, and science requirements
    corecore